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Abstract. Graph Neural Networks (GNNs) are powerful to learn rep-
resentation of graph-structured data, which fuse both attributive and
topological information. Prior researches have investigated the expressive
power of GNNs by comparing it with Weisfeiler-Lehman algorithm. In
spite of having achieved promising performance for the isomorphism test,
existing methods assume overly restrictive requirement, which might hin-
der the performance on other graph-level tasks, e.g., graph classification
and graph regression. In this paper, we argue the rationality of adap-
tively emphasizing important information. We propose a novel global
attention module from two levels: channel level and node level. Specif-
ically, we exploit second-order channel correlation to extract more dis-
criminative representations. We validate the effectiveness of the proposed
approach through extensive experiments on eight benchmark datasets.
The proposed method performs better than the other state-of-the-art
methods in graph classification and graph regression tasks. Notably, It
achieves 2.7% improvement on DD dataset for graph classification and
7.1% absolute improvement on ZINC dataset for graph regression.

Keywords: Graph classification · Graph regression · Graph neural
networks · Attention mechanism

1 Introduction

Graph Neural Networks (GNNs) have proved to be powerful in learning represen-
tation of graph data and have attracted a surge of interests [1,3,7,8,25,28–32].
Recently, numerous approaches have been proposed to quantify such representa-
tion power of GNNs [18,20,27]. These approaches try to bridge a theoretical con-
nection with the Weisfeiler-Lehman (WL) algorithm [24] when judging the graph
isomorphism. We term these approaches as WL-GNNs. In general, WL-GNNs
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Fig. 1. A toy example of predicting the debt-paying ability of different companies. G1
and G2 show the shareholder relationships of two companies, which should be classified
as the same class. (a) Each node represents a shareholder of the company and consists of
four numerical attributes. These two graphs are quite similar in the first two important
attributes but have vast difference in the latter two trivial attributes. (b) G1 and G2
are distinguished by WL-GNNs and may be misclassified into different classes. S12

refers the cosine similarity of G1 and G2. (c) Attention-guided WL-GNNs yield much
closer distance in latent space.

aim to distinguish non-isomorphic graphs by approximating an injective hash
function. More specifically, if two graphs are non-isomorphic, they are expected
to have different embeddings through WL-GNNs. Owing to the superior perfor-
mance of WL-GNNs in distinguishing graphs with regard to isomorphism test,
there are also approaches that apply WL-GNNs in graph classification and graph
regression tasks [18,20,21,27].

Although WL-GNNs have shown strong advantages in above graph analyti-
cal tasks, a deficiency is that graph isomorphism property is an overly restrictive
requirement for other graph-level tasks. Specifically, since any difference between
two graphs can lead to the non-isomorphism, WL-GNNs do not need to con-
sider feature importance. However, this makes WL-GNNs inadequate to discover
determinative signals that indicate the graph characteristics in some graph-level
tasks. Figure 1 illustrates how WL-GNNs limit the performance in these tasks,
where we consider a toy problem of predicting the debt-paying ability of dif-
ferent companies. Suppose G1 and G2 are two small companies, where nodes
denote shareholders and the edges denote partnership. Given four dimensions
representing the property, age, gender and location of the shareholders, it is
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commonly accepted that the rich and the middle-aged will have a higher chance
to repay a loan than the poor and the young. Therefore, personal property and
age features should contribute relatively more than the other two features in
estimating the solvency. Correspondingly, in Fig. 1(a), G1 and G2 with similar
property and age features are expected to behave similarly. Nevertheless, since
G1 and G2 have obvious difference in gender and location features, the cosine
similarity between these two companies is only 0.03. As shown in Fig. 1(b), when
applying conventional WL-GNNs with injective multiset function [27], G1 and
G2 may be far away from each other in the latent representation space and be
misclassified into different classes.

A simple way to infer the global channel attention weights of graphs is
employing an average pooling aggregator at each channel, and then apply some
learning mechanisms to obtain the attention weights (illustrated in Fig. 1(c)).
However, the global average pooling operation only explores first-order statistics,
ignoring channel interdependencies. Taking Fig. 1 as an example, there might be
strong interdependencies between personal property and age, because one usu-
ally needs decades of years to accumulate its fortune. Hence, we need adequately
considering graph channel interdependencies. Recent works in computer vision
have also shown that deep neural networks with such second-order statistics can
improve classification performance [16,17,26]. To this end, we are inspired to
develop a novel second-order global channel attention network to fully exploit
the channel interdependencies. Similarly, global node attention also helps extract
important information (please refer to Sect. 3.2 for more details).

On this basis, we propose a Second-order Global Channel Attention (SoGCA)
mechanism for better channel correlation and importance learning. Our SoGCA
adaptively learns important information by exploiting second-order channel
statistics, extracting more discriminative representations. Moreover, a Global
Attention-guided Structure (GAS) is presented to highlight important informa-
tion from two levels: channel level and node level. By stacking GAS after each
graph isomorphism aggregator, we obtain a Second-order Global Attention Net-
work (SGAN) which is compatible with existing WL-GNNs. In order to evaluate
the generality of SGAN, we devise three variants based on GIN [27], 3WLGNN
[18] and PNA [2], respectively. We conduct comprehensive experiments on eight
public datasets and achieve state-of-the-art results on all benchmark tasks.

2 Preliminaries

2.1 Notations and Problem Definition

Consider a graph G(V, E ,X) with N = |V| nodes and |E| edges. X ∈ R
N×d0

denotes the node feature matrix, where d0 is the number of input attributes.
Given a collection of graphs {G1, ..., GN} and their corresponding labels
{y1, ..., yN}, the task of graph classification or graph regression is to learn a
mapping f : G → Y, where G is the set of input graphs and Y is the set of labels
associated with each graph.
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Fig. 2. The architecture of SGAN (best view in color). The WL-GNN block indicates
a layer of the general WL-GNNs, which can be instantiated by GIN, 3WLGNN layers,
etc. GAS block consists of a SoGCA module and a node attention module. SoGCA
module uses second-order information to perform channel-wise attention, giving each
dimension of hidden embeddings different weight. Node attention module obtain the
importance of nodes. (Color figure online)

2.2 Graph Isomorphism Networks

Graph Isomorphism Networks [27] (GIN) is an architecture based on the
Weisfeiler-Lehman Isomorphism test, which can quantify the expressive power
of GNNs. GIN is as powerful as 1-WL algorithm owing to injective update and
aggregation functions as:

Ĥ�+1 = (1 + ε)H� + AH�, (1)

H�+1 = ReLU
(
ReLU

(
BN

(
Ĥ�+1 V�

) )
U�

)
, (2)

where ε can be a learnable parameter or a fixed scalar, H� ∈ R
N×d is the

embedding representation of all nodes derived from the �th layer, V�,U� ∈ R
d×d

are learnable matrices for layer �, BN represents Batch Normalization [10],
ReLU(x) = max(0, x) is the non-linear activation function, and A is the adja-
cency matrix of the graph.

3 Proposed Method: SGAN

In the following section, we consider the intermediate graph representation H ∈
R

N×d resulting from the layer of WL-GNNs, which can be instantiated by GIN,
3WLGNN layers [18], etc. Following the concept of channel in Convolutional
Neural Networks (CNNs), we define each column of H as a channel.

3.1 Second-Order Global Channel Attention (SoGCA)

Existing WL-GNNs do not consider the importance of different channels for
graph isomorphism test. However, for other graph-level tasks, we have analyzed
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the necessity of modeling feature importance in Sect. 1. Besides, recent studies
in computer vision [16,17] have shown that channel interdependencies in deep
CNNs are helpful for extracting more discriminative representations. Inspired
by this observation, we propose a SoGCA module that incorporates channel
interdependencies. As illustrated in Fig. 2, the SoGCA consists of three parts:
bilinear encoding, global correlation pooling, and channel calibration.

Bilinear Encoding. The first step is to model channel interdependencies by
utilizing a correlation matrix. We calculate the inner product between each pair
of channels to generate a channel correlation matrix D as:

D = HT H, (3)

where D ∈ R
d×d and each element Dij =

∑N
k=1 HikHkj measures the degree

of second-order interdependency between two channels. A large value of Dij

indicates the ith channel and the jth channel are highly related.
To further improve feature representation, we normalize the channel correla-

tion matrix D. Following the practice in [16], we adopt signed square-root and
�2 normalization, which yields

Dnorm = sign(D)

√|D|
‖√|D|‖

2

. (4)

Note that the above operations are piecewise differentiable, so they can be used
for end-to-end training.

Global Correlation Pooling. Then, we apply global average pooling func-
tion over the normalized correlation matrix Dnorm. We obtain a global channel
descriptor z = (z1, z2, ..., zd) ∈ R

1×d as:

z =
1
d

∑

m

(Dnorm)m. (5)

Compared with directly applying global average pooling over H, global corre-
lation pooling captures more useful information. Each element zi encodes the
second-order interdependencies between the ith channel and all the other chan-
nels. So the global channel descriptor z can be used for learning more discrimi-
native representation. We validate the effectiveness of global correlation pooling
in Sect. 4.4.

Channel Calibration. In order to learn the attention weights and fully exploit
channel interdependencies, we apply 2-layer MLPs as:

Mc = σ(ReLU(zW0)W1), (6)

where W0 ∈ R
d×r, W1 ∈ R

r×d are learnable weights, r is a hyper-parameter
which controls capacity of the attention module. Finally, we obtain the channel
attention map Mc to rescale the graph representation as:

H′ = Mc ⊗ H. (7)
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3.2 Node Attention Module

Apart from channel attention, node attention is also important for extracting
informative signals. For example, in molecular chemistry, the functional groups
are usually related to a lot of chemical properties, while many other nodes do not
influence the properties. So we also generate a node attention map, which can
focus on important nodes and provides complementary information to channel
attention.

If we apply the above bilinear encoding to calculate node attention, we would
get a node correlation matrix of RN×N . As a result, it would be intractable to
handle this matrix in large graphs. For simplicity, we use a linear projection
followed by a softmax function to calculate the node attention score as:

Mn = softmax(σ(H′W2)), (8)

where W2 ∈ R
d×1 are the trainable weight matrix for node attention,

softmax(x) = ex/
∑

ex is used for normalization.
After that, Mn is applied to obtain the refined graph representation H′′,

which is fed into the follow-up layers of WL-GNNs:

H′′ = Mn ⊗ H′. (9)

In fact, the above second-order channel attention resemble that in SOPOOL
[23]. However, SGAN is distinct from SOPOOL in both motivation and tech-
nique. On the one hand, SGAN points out the limitations of directly applying
WL-GNNs to graph classification and graph regression tasks, while SOPOOL
only focuses on strenthen important features. On the other hand, SGAN also
considers the node importance via node attention.

4 Experiments

Datasets. For a comprehensive evaluation of our proposed method, we use eight
benchmark datasets in benchmark-GNNs [4] and OGB [9] for graph analytical
tasks, including classification, regression, and graph isomorphism test. For graph
classification task, two widely used protein datasets [12], ENZYMES and DD are
used. We also conduct experiments on larger datasets of MNIST and CIFAR10.
These two datasets convert the original images into graphs using super-pixels.
For graph regression task, we use a subset of ZINC molecular graphs dataset [11]
to regress the constrained solubility of a molecule. We also apply another two
molecular graphs, OGBG-molesol and OGBG-molfreesolv in OGB [9] dataset
for regression. Furthermore, we use the Circular Skip Link (CSL) dataset [21]
for graph isomorphism test. The statistics of these datasets are summarized in
Table 1.
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4.1 Experimental Setup

Compared Methods. We compare SGAN with four widely used message
passing-based GNNs: GCN [14], GraphSage [6], GAT [22] and MoNet [19]. For
attention-guided GNNs, we compare with SAGPool [15] and cGAO [5]. For WL-
GNNs, we select GIN [27], 3WLGNN [18] and PNA [2] as baselines.

Implementation Details. We closely follow benchmark-GNNs to set hyper-
parameters. We perform grid-search to select the initial learning rate from a
range of 1e−3 to 7e−5. The learning rate decay factor is 0.5 and the model is
optimized with Adam [13] optimizer. We use classification accuracy as evaluation
metric for all datasets except ZINC. For the regression task on ZINC, we measure
the performance by using Mean Absolute Error (MAE). We report the average
results of MNIST, CIFAR10 and ZINC over 4 runs with 4 different seeds. The
results on CSL dataset are obtained by running 20 times with different seeds.
All baselines on all benchmark-GNNs datasets are trained with a budget of
100k parameters. Following experimental protocols of OGB, we use edge features
and report the Root Mean Squared Error (RMSE). Notably, we implement our
baselines on Huawei Mindspore platform.

4.2 Performance Comparison

We compare the performance of SGAN with baseline methods on four graph
classification datasets and one graph regression dataset. The results are shown
in Table 2. We find that:

– Traditional WL-GNNs perform relatively poor. Although provably
powerful in terms of graph isomorphism test, GIN and 3WLGNN do not
outperform GCN or GAT obviously. This indicates that graph isomorphism
property is not sufficient to yield satisfactory results in graph classification
and regression tasks.

Table 1. Statistics of all datasets in experiments.

Dataset #Graphs #Classes Tasks

ENZYMES 600 6 Classification

DD 1178 2 Classification

MNIST 70k 10 Classification

CIFAR10 60k 10 Classification

ZINC 12k – Regression

OGBG-molesol 1128 – Regression

OGBG-molfreesolv 642 – Regression

CSL 150 10 Isomorphism
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Table 2. Results of graph classification/regression with the best performances high-
lighted in bold. Classification accuracies (%) are reported for all datasets except ZINC.
↓ indicates lower is better for the regression loss. OOM represents out of memory.

Method ENZYMES DD MNIST CIFAR10 ZINC (↓)

GCN 65.833 72.758 90.705 55.710 0.459

GraphSage 65.000 73.433 97.312 65.767 0.468

MoNet 63.000 71.736 90.805 54.655 0.397

GAT 68.500 75.900 95.535 64.223 0.475

SAGPool 66.833 75.354 92.375 57.032 0.425

cGAO 63.833 73.685 91.833 54.824 0.468

GIN 65.333 71.910 96.485 55.255 0.387

3WLGNN 61.000 OOM 95.075 59.175 0.407

PNA – – 97.190 70.210 0.320

SGAN(GIN) 68.333 78.010 97.500 58.750 0.267

SGAN(3WLGNN) 62.000 OOM 96.212 63.125 0.384

SGAN(PNA) – – 97.650 70.340 0.249

Table 3. Ablation study of SGAN(GIN) on benchmark-GNNs datasets. We investigate
the effectiveness of SoGCA and node attention (NA), respectively. The first line is the
results of GIN.

SoGCA NA ENZYMES DD MNIST CIFAR10 ZINC (↓) Isomorphism
test

× × 65.333 71.910 96.485 55.255 0.387 99.333

× √
65.167 77.428 97.205 58.403 0.272 99.333√ × 67.500 72.147 97.410 58.126 0.291 99.333√ √
68.000 78.010 97.500 58.750 0.267 99.333

– Global attention mechanisms improves the performance. SAGPool
achieves better performance than GCN in most cases. We attribute this
improvement to capturing important nodes. However, neither SAGPool nor
cGAO can obtain state-of-the-art results, because they only consider one
kind of attention. Besides, since both SAGPool and cGAO employ GCN as
base neighborhood aggregator, their performances may also be dragged down
by GCN. Furthermore, cGAO may even degrades the performance on some
datasets, which might be caused by lacking learnable parameters in attention
process.

– SGAN consistently achieves the best performance on all datasets.
SGAN improves the performance over GIN and 3WLGNN by remarkable
margins, which verifies the necessity of modeling graph-level channel attention
and node attention. Specifically, even compared with the very recent state-of-
the-art PNA method, the proposed SGAN yields better results. The reason
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is that PNA only focuses on capturing the local neighborhood distributions,
while SGAN(PNA) can extract additional important global information.

4.3 Ablation Study of Attention Modules

In this subsection, we investigate the contributions of SoGCA and node atten-
tion module (NA) to the performance. We conduct experiments based on
SGAN(GIN) by removing all SoGCA modules and NA modules, respectively.
The results are shown in Table 3 and Table 4. We have the following observa-
tions:

Table 4. Ablation study of SGAN(GIN) on OGB datasets for regression. The first line
is the results of GIN.

SoGCA NA OGBG-molesol (↓) OGBG-molfreesolv (↓)

× × 0.998 2.151

× √
1.087 2.709√ × 0.875 1.872√ √
1.028 2.424

Fig. 3. The performance of different channel attention variants on graph classification.
We plot the classification accuracy for the four datasets. Higher are better for these
histograms. w/o is the abbreviation of without.

– The characteristics of datasets influence the performance on differ-
ent modules. Interestingly, SoGCA brings more improvement on ENZYMES
while NA performs better on DD and ZINC dataset. We guess these discrep-
ancies are due to different characteristics of datasets. For instance, the input
node features contain continuous values ranging from −10 to around 300 in
ENZYMES. In contrast, the input node attributes in DD and ZINC dataset



Second-Order Global Attention 505

follow one-hot encoding, where most of the numbers in attribute vectors equal
to zero. As a result, SoGCA performs better on ENZYMES because channel
interdependencies might be more important to this dataset.

– Compared to NA, the proposed SoGCA achieves more stable
improvements in most cases. Applying NA decreases the performance
on some datasets, such as ENZYMES in Table 3 and the two OGB datasets
in Table 4. We conjecture that most of the nodes in these datasets are impor-
tant and NA neglects this information. By contrast, SoGCA still has satis-
factory improvements in these datasets, which therefore verifies the necessity
of modeling channel attention.

– The combination of SoGCA and NA usually achieves better per-
formance. Except for the situation when NA fails, the combination of these
two attention modules usually produces better performance. Since these two
modules focuses on different aspects of node embedding, they provide com-
plementary information to each other. Therefore, it is reasonable to combine
them.

– SGAN can retain the expressive power of vanilla WL-GNNs. We con-
duct experiments on graph isomorphism task to study the expressive power
of SGAN(GIN). For isomorphism test, it is required to strictly distinguish-
ing these two graphs. Therefore, it might be natural that attention modules
degrade the performance for graph isomorphism task. However, we find that
removing SoGCA or NA makes no difference to the performance. This demon-
strates that SoGCA and NA can learn adaptively according to the task. When
the attention weights are near uniform distribution, SGAN(GIN) degenerates
to GIN and keeps the same accuracy as GIN.

4.4 Study on Channel Interdependencies

In this subsection, we make a deeper study on the effect of modeling chan-
nel interdependencies. As presented in Sect. 3.1, our SoGCA module consists of
three parts: Bilinear Encoding, Global Correlation Pooling (GCP) and Channel
Calibration. Both of the first two parts and the third part can model channel
interdependencies. We remove these parts respectively, yielding two model vari-
ants. The first variant is called First-order Graph Channel Attention method
(FoGCA). The second variant is abbreviated as SoGCA w/o MLPs, which
removes the 2-layer MLPs and uses the global channel descriptor z as channel
attention map. We compare the results of these models based on GIN (i.e., no
attention variant), which are shown in Fig. 3. It can be found that modeling chan-
nel attention can generally improve the performance of GIN. Either removing
second-order modeling or MLPs degrades the overall performance, which verifies
the necessity of modeling channel interdependencies and channel attention.

5 Conclusion

In this paper, we have proposed a novel second-order global attention networks
for graph classification and regression tasks. The key of SGAN is the newly pro-
posed SoGCA layer, which can capture second-order channel interdependencies



506 F. Hu et al.

and highlight important information. Compared with other previous WL-GNNs
which focus on graph isomorphism property, our proposed SGAN can highlight
determinative information from both channel level and node level. Comprehen-
sive experiments have demonstrated the rationality and necessity of modeling
channel attention and capturing second-order statistics of features for GNNs.
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22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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